FlashFloodBreaker

Computer Vision in Flash Flood Forecasting: A Narrative Review of Applications, Integration Pathways, and Future Directions

Research Centre

Nimbus

Hasitha Adikari 12* Christian O'Leary 2 Joe Harrington 1 Conor Lynch 2 ¹Sustainable Infrastructure Research & Innovation Group, Munster Technological University, Cork, Ireland ²Nimbus Research Centre, Munster Technological University, Cork, Ireland *Corresponding Author: adikari.adikari@mymtu.ie

Motivation

- ► Flash floods: rapid onset, severe local impacts; limited lead times.
- ► Traditional hydrologic/hydraulic models face uncertainty and latency constraints.
- ► CV extracts high-resolution, actionable signals from UAV, satellite, CCTV, crowdsourced imagery.

Research Gap: Limited synthesis on operational integration with forecasting workflows.

Review Methodology

- ► Databases: ACM Digital Library, Wiley Online Library, IEEE Xplore.
- ► Search duration: 2010–2025
- ► Key search terms:
- ► flash flood forecasting
- ► flood extent mapping
- river water segmentation
- water level detection
- ► Inclusion: peer-reviewed CV for flood-relevant tasks; preference for Europe.
- Extraction: region, data source, algorithm, metrics, integration pathways.

flood debris detection

change detection

image compression

► land use land cover classification

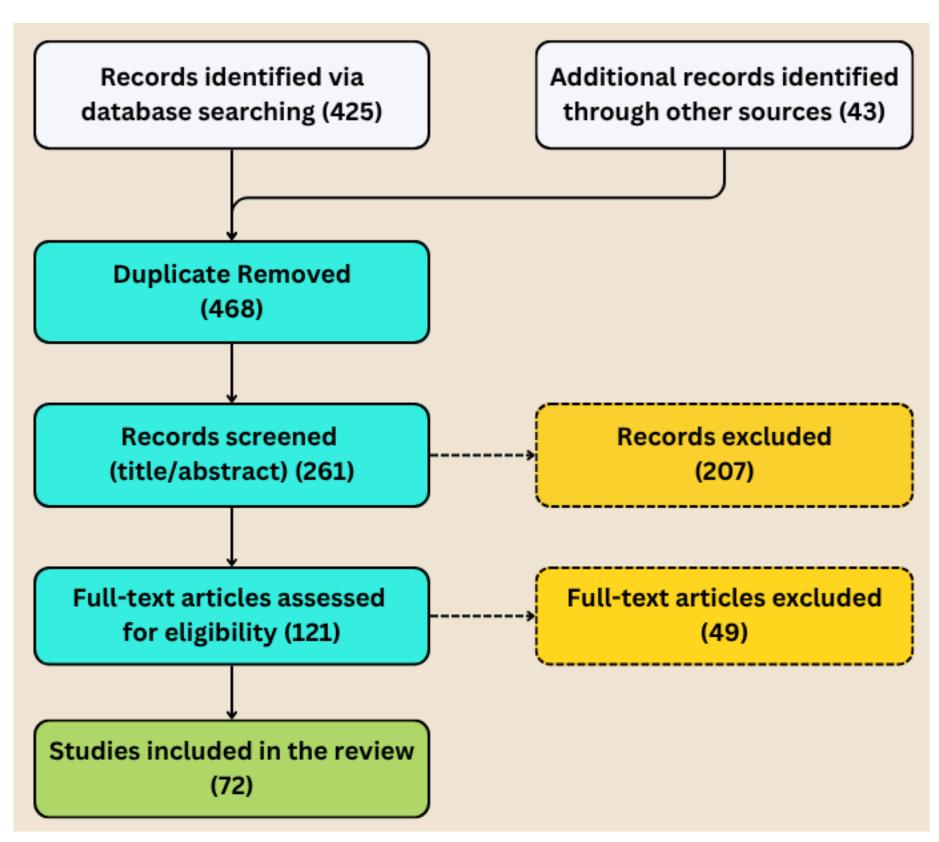


Figure 1: PRISMA-style flow diagram illustrating the identification, screening, eligibility, and inclusion process of studies

Forecasting Workflow

- **Sources** → UAV, satellite (SAR/optical), CCTV, crowd images.
- ightharpoonup Transfer ightharpoonup Compression, anomaly removal, prioritisation.
- ► **Features** → LULC, flood extent, debris, water level, changes.
- ightharpoonup Models ightharpoonup ML/DL forecasting; (optionally) hydrodynamic DA.
- **▶ Decisions** → Impact assessment and alerts.

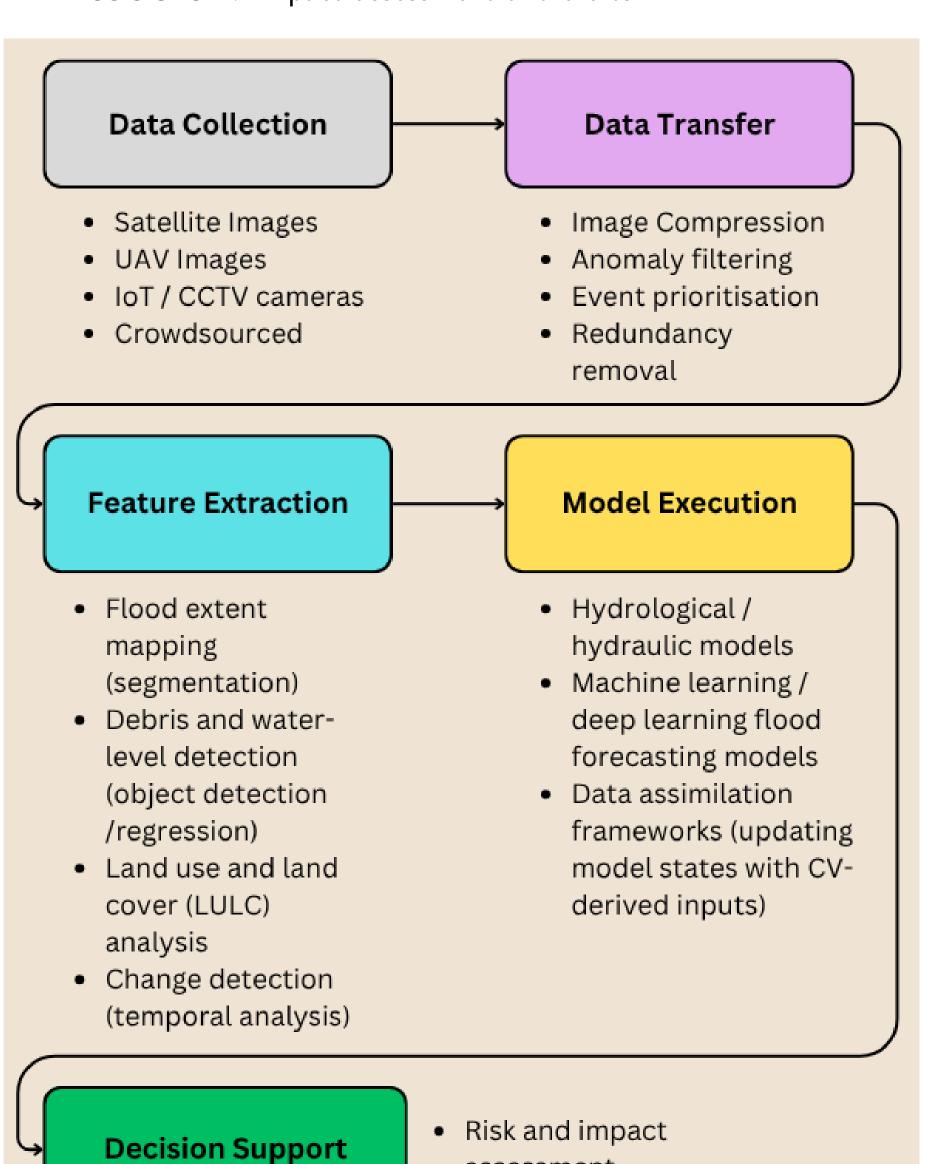


Figure 2: Workflow of computer vision in flash flood forecasting

Image Sources

Image Source	Resolution	Coverage Area	Cost & Efficiency
Satellite Imagery	10m - 250m	Large-scale	Free (Sentinel, Landsat) but costly
(Optical & Radar)	(Sentinel-2: 10m,	(regional/global)	for high-res (commercial satellites);
	MODIS: 250m)		moderate processing time
UAV (Drones)	cm-level	Small-scale	Expensive (drone purchase, operations);
lmagery		(local/urban areas)	quick processing but limited scalability
Aerial Imagery	10-50 cm	Large (city/state	Expensive (flight costs, data processing);
(Manned Aircraft)		level)	slower than UAVs
Ground-Based	Varies (depends	Point-based	Low-cost but limited spatial coverage
Cameras	on camera type)	(specific locations)	
Crowdsourced	Varies (depends	Localised (urban	Low-cost; requires validation for
Smartphone Images	on device)	areas)	reliability
Weather Radar	1-2 km	Regional/National	Expensive infrastructure but automated
(Doppler Radar)			data collection
LiDAR	cm-level	Local to regional	Very expensive; data-heavy and slow
(Airborne/Terrestrial)			processing
Street-Level & IoT	Varies (High to	Local (highways,	Moderate cost; automated real-time
Cameras	lower resolution)	urban streets)	monitoring

Flood Extent Mapping

CNNs (U-Net, SegNet, DeepLabV3+): strong edges, practical; U-Net data-efficient. **Transformers**: long-range context; higher data/compute needs.

Europe: Sentinel-1/2 IoU often \sim 0.70–0.85; UAV case studies high-detail but small datasets and occlusion challenges.

Needs: standard benchmarks, inference-time reporting, UAV datasets (NWE).

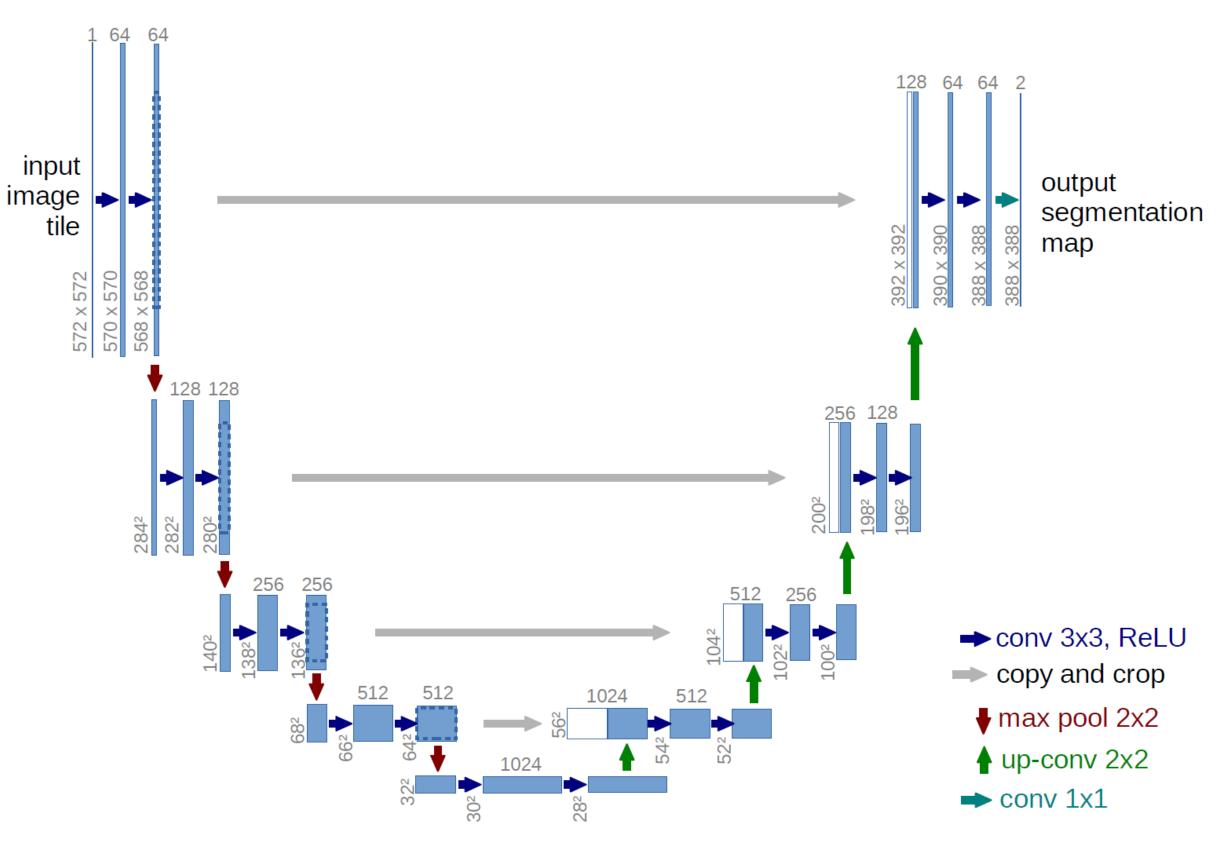


Figure 3: UNET architecture

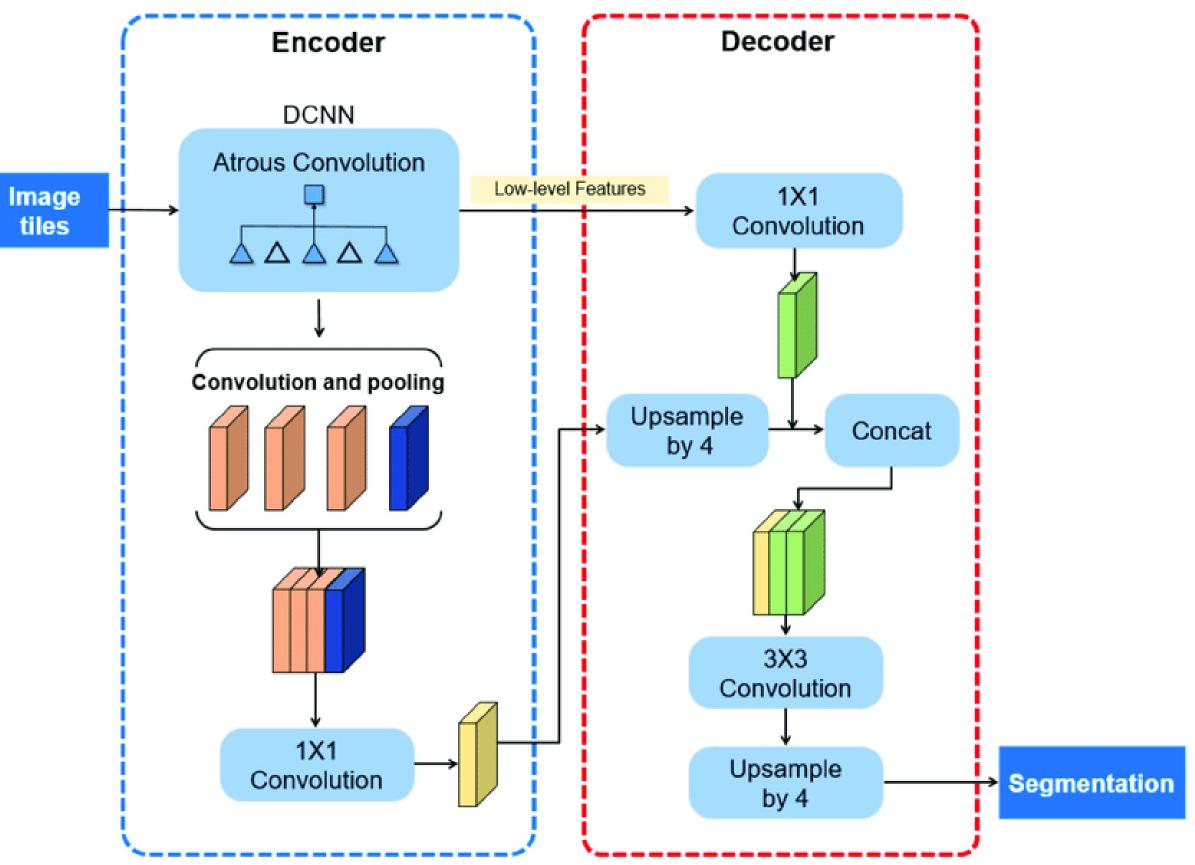


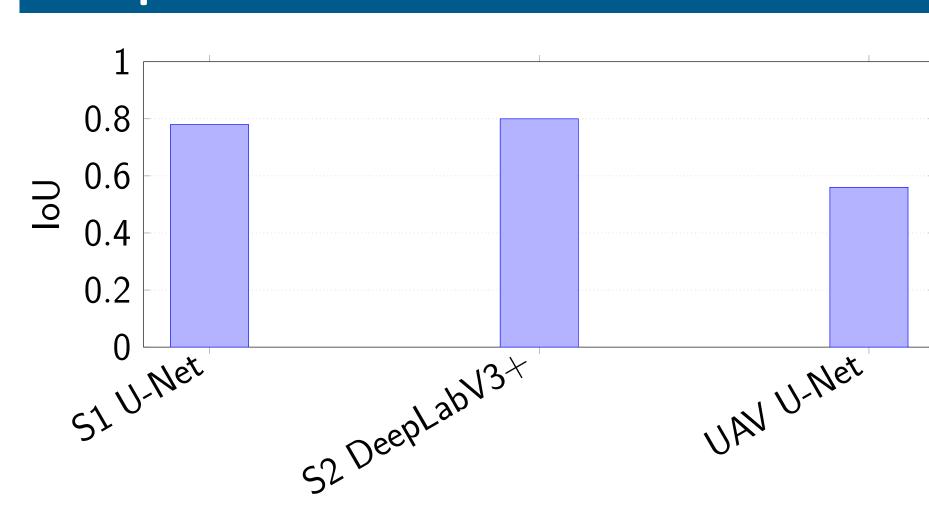
Figure 4: DeepLabV3+ architecture

River water segmentation: An application of Image segmentation

River Water Segmentation Mask

Figure 5: Segmented River water from the background, particularly useful in calculating water surface area

Comparison between CNN architectures

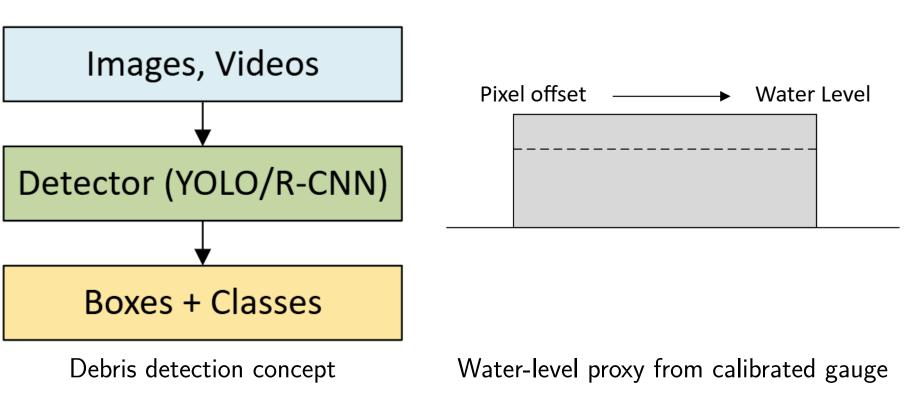


Debris and Water-Level Detection

Debris: YOLO / Faster/Mask R-CNN; UAV/CCTV video for real-time risk.

Water level: gauge reading (detection/segmentation), regression to stage.

Trade-offs: speed vs precision; view dependence; illumination/occlusion.



LULC Analysis

Sentinel-2 + **RF/CNN**: supports roughness/infiltration parameterisation; exposure mapping. Limits: class confusion in complex urban terrain; update frequency.

Change Detection

Siamese CNNs, Transformers: bi/tri-temporal morphology and flood progression.

Note: ViT excels at global changes; CNNs capture fine details with smaller data.

Impact Assessment

Targets: building/road damage, transport disruption, exposed assets. **Inputs:** pre/post imagery + flood masks + ancillary GIS layers.Need: harmonised labels, uncertainty reporting for decision support.

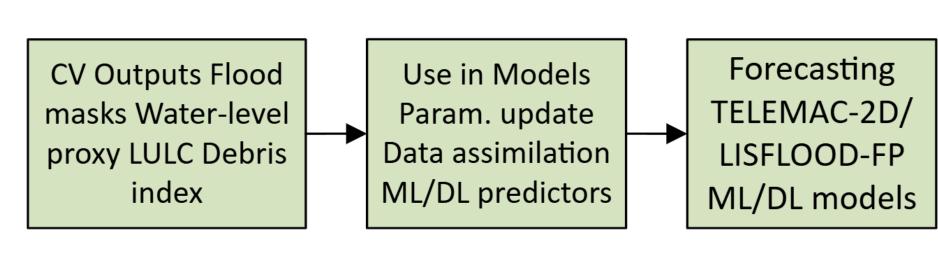
LULC Change **Impact** Siamese/Transformer \rightarrow morphology ness, infiltration, exposure. pre/post + masks + GIS overlays. and progression.

Image Compression

Autoencoders, VAEs, GANs, Transformers: enable UAV→ground transfer with low latency.

Integration into Forecasting Models

Note: quantify impact of compression on downstream CV accuracy.



Hydrodynamic DA (Europe): SAR flood products assimilated into TELEMAC-2D, LISFLOOD-FP, hydrologic-hydraulic chains; improved event forecasts but latency/compute costs.

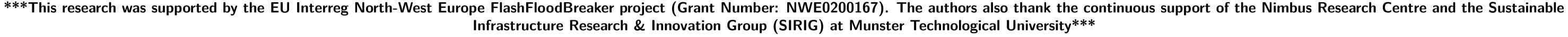
ML/DL coupling: use flood masks, water-level proxies, LULC features as predictors to reduce runtime while preserving physical signals.

Example (EU)	Integration Insight
$SAR \rightarrow TELEMAC-2D$	EnKF dual state-parameter updates improve
	skill.
$SAR \to LISFLOOD\text{-}FP$	Particle filter with probabilistic flood masks.

LULC \rightarrow Rainfall-runoff Parameterisation of roughness/infiltration.

Key Insights & Future Directions

- ► CNN segmentation remains most practical; transformers promising with data.
- ► SAR reliable under cloud; revisit and preprocessing latency constrain NRT.
- ► UAV provides on-demand high-res; limited benchmarks/coverage.
- ► Hybrid CV–ML/DL workflows for near-real-time forecasting.
- Priorities: lightweight models, open benchmarks (esp. NWE), reproducible pipelines.



assessment

