

Co-funded by the European Union

North-West Europe

FlashFloodBreaker

Hydrodynamic simulations of pluvial and fluvial flooding in the Emscher catchment area

Climate and environment

FlashFloodBreaker Integrated simulation of pluvial fluvial flood events

Impact of Buildings on 2D Pluvial Flood Simulations using TELEMAC-2D

- Increased **intensity** and **frequency** of **flooding** due to climate change
- **Urban areas** are endangered due to **impermeable** surfaces
- Creating **flood risk maps** for better precaution and warning of stakeholders
- Software: QGIS, BlueKenue, TELEMAC-2D
- Parameters: DTM, Manning's Roughness Coefficient, Curve Number
- Two precipitation events: 90mm block rain, storm rainfall event July 14 2021 (RADOLAN)
- 4 building representation methods:
 - 1. Building Block (**BB**)
 - 2. Building Hole (**BH**)
 - 3. Building Resistance (**BR**)
 - 4. Level of Detail 2 (LoD2)
- 3 study areas: urban city center, rural area, commercial district

Commercial District Buildings Outline

Results

Fig. 1: Discharge over time at the end of the urban study area

Fig. 2: Commercial district study area

Pairing of **BB/LoD2** and **BH/BR** methods

- BB > LoD2 > BR > BH
- $BB \sim LoD2$
- **BH** introduces **holes** in mesh > **less** total **rainfall**
- **BR** generates artificial basins (**ponding**)
- **BR** shows **delay in runoff** due to increased roughness
- **BH** generates **50% less discharge** than BB
- **Pre-processing** effort **highest** for **BH**
- **Computational** effort **lowest** for **BH**, approximately the same and threefold for BB/LoD2/BR
- **Definitive conclusion** regarding the **most suitable** method could not be drawn

flashfloodbreaker.nweurope.eu