

Co-funded by the European Union

North-West Europe

FlashFloodBreaker

Integration of hydraulic processes in 2dimensional simulations of heavy rainfall scenarios

Climate and environment

FlashFloodBreaker Integrated simulation of pluvial fluvial flood events

From Rainfall to Runoff: Development and validation of approaches for improving heavy rain hazard maps using 2D hydraulic modeling

Importance of Flood Hazard Management: Heavy rain risk management is crucial for identifying areas vulnerable to surface water accumulation and overland flow paths.

Heterogeneous Methodologies: Germany's federal structure has led to inconsistent heavy rain hazard mapping approaches.

Study Focus: The study evaluates the accuracy of a 2D heavy rainfall simulation model for a part of the Emscher river basin, using the June 22–23, 2023 rainfall event for validation.

Model and Scenario Development: The 2D hydraulic model was developed using HydroAs MapWork, incorporating different methods to include hydrological processes with the help of SCS-CN Method, Horton Infiltration and the Nasim hydrological model of the EGLV.

Fig. 1: Study area

Preliminary Results for the Rossbach Catchment:

The performance of four methods—Standard, SCS-CN, Horton drained but not dried out, and Nasim Complete Integration (CI)—was evaluated at Gauge 10120 in the Rossbach catchment.

	RMSE↓	NSE↑	r↑	sMAPE↓	Peak Mag. (m³/s)	Peak Time	Runoff Vol. (m ³)	Runoff Coeff. c
Measured Gauge 10120	-	-	-	-	9.64	2023-06-23 03:50	418083.3	0.15
Standard	11.8	-14.93	0.83	124.63	33.71	2023-06-23 01:36	1337055.61	0.47
SCS-CN	7.23	-4.98	0.97	96.81	22.17	2023-06-23 03:00	1036726.69	0.37
Horton drained but not dried out	1.53	0.73	0.95	112.87	11.35	2023-06-23 03:45	288667.79	0.1
Nasim Complete Integration Cl	1.55	0.72	0.93	98.0	11.26	2023-06-23 04:15	304795.86	0.11

Fig. 2: Discharge over time of different simulation runs and evaluation.

Physically-based methods (Horton/Nasim CI) outperformed the Empirical SCS-CN and the Standard Scenario in discharges, with lower errors and stronger temporal alignment.

Conclusion:

Incorporating hydrological runoff processes into heavy rain hazard mapping can prevent overestimation and ensure accurate risk assessments.

Authors: B. Sc. Sabrina Huber

